Differentiation of Low- and High-Grade Gliomas Using High b-Value Diffusion Imaging with a Non-Gaussian Diffusion Model.

نویسندگان

  • Y Sui
  • Y Xiong
  • J Jiang
  • M M Karaman
  • K L Xie
  • W Zhu
  • X J Zhou
چکیده

BACKGROUND AND PURPOSE Imaging-based tumor grading is highly desirable but faces challenges in sensitivity, specificity, and diagnostic accuracy. A recently proposed diffusion imaging method by using a fractional order calculus model offers a set of new parameters to probe not only the diffusion process itself but also intravoxel tissue structures, providing new opportunities for noninvasive tumor grading. This study aimed to demonstrate the feasibility of using the fractional order calculus model to differentiate low- from high-grade gliomas in adult patients and illustrate its improved performance over a conventional diffusion imaging method using ADC (or D). MATERIALS AND METHODS Fifty-four adult patients (18-70 years of age) with histology-proved gliomas were enrolled and divided into low-grade (n = 24) and high-grade (n = 30) groups. Multi-b-value diffusion MR imaging was performed with 17 b-values (0-4000 s/mm(2)) and was analyzed by using a fractional order calculus model. Mean values and SDs of 3 fractional order calculus parameters (D, β, and μ) were calculated from the normal contralateral thalamus (as a control) and the tumors, respectively. On the basis of these values, the low- and high-grade glioma groups were compared by using a Mann-Whitney U test. Receiver operating characteristic analysis was performed to assess the performance of individual parameters and the combination of multiple parameters for low- versus high-grade differentiation. RESULTS Each of the 3 fractional order calculus parameters exhibited a statistically higher value (P ≤ .011) in the low-grade than in the high-grade gliomas, whereas there was no difference in the normal contralateral thalamus (P ≥ .706). The receiver operating characteristic analysis showed that β (area under the curve = 0.853) produced a higher area under the curve than D (0.781) or μ (0.703) and offered a sensitivity of 87.5%, specificity of 76.7%, and diagnostic accuracy of 82.1%. CONCLUSIONS The study demonstrated the feasibility of using a non-Gaussian fractional order calculus diffusion model to differentiate low- and high-grade gliomas. While all 3 fractional order calculus parameters showed statistically significant differences between the 2 groups, β exhibited a better performance than the other 2 parameters, including ADC (or D).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index

Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...

متن کامل

Grading of Glioma Tumors by Analysis of Minimum Apparent Diffusion Coefficient and Maximum Relative Cerebral Blood Volume

Background: Gliomas are the most common primary neoplasms of the central nervous system. Relative cerebral blood volume (rCBV) could estimate high-grade Gliomas computed with dynamic susceptibility contrast MR imaging which it is artificially lowered by contrast extravasation through a disrupted blood-brain barrier. Objectives: Our intent was to clarify the usefulness of diffusion-weighted m...

متن کامل

تعیین دقت تصویربرداری تشدید مغناطیسی دیفیوژن تنسور در درجه‌بندی تومورهای گلیال بر اساس فراکشنال آنیزوتروپی

Background and purpose: The most common primary tumors of the central nervous system are gliomas. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. Accurate assessment of tumor grade is important for determination of appropriate treatment strategies. The purpose of this study was to evaluate the role of Diffusion Tensor imaging (as a non-invasive ...

متن کامل

Diffusion-weighted imaging-based probabilistic segmentation of high- and low-proliferative areas in high-grade gliomas

The apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) correlates inversely with tumor proliferation rates. High-grade gliomas are typically heterogeneous and the delineation of areas of high and low proliferation is impeded by partial volume effects and blurred borders. Commonly used manual delineation is further impeded by potential overlap with cerebrospinal f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 37 9  شماره 

صفحات  -

تاریخ انتشار 2016